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We present results on the dynamics of the distorted diamond chain, S=1/2 dimers alternating with single
spins 1/2 and exchange couplings J; and J3 in between. The dynamics in the spin fluid (SF) and tetramer-
dimer (TD) phases is investigated numerically by exact diagonalization for up to 24 spins. Representative
excitation spectra are presented both for zero magnetic field and in the 1/3 plateau phase and the relevant
parameters are determined across the phase diagram. The behavior across the SF-TD phase transition line is
discussed for the specific heat and for excitation spectra. The relevance of the distorted diamond chain model
for the Cu3(CO3),(OH), (azurite) material is discussed with particular emphasis on inelastic neutron scattering
experiments; the recent suggestion of one possibly ferromagnetic coupling constant is not confirmed.
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I. INTRODUCTION

The distorted diamond chain (DDC) is a one-dimensional
quantum spin model with structure as shown in Fig. 1(a) and
Hamiltonian

N3
H= 2 {1583,11S3m42 + J1(S3,8 31 + S304253043)

n=1

+J3(83,83,42 + S3,4183,43) (1)

This model with spins 1/2 and all antiferromagnetic cou-
plings may be strongly frustrated owing to the triangular
building blocks and has received increasing theoretical' ™’ as
well as experimental®~! interest in the past decade for a
number of reasons: It has a rich quantum phase diagram as
shown in Fig. 1(b) (taken from Ref. 3). Here and in the
following, we choose a representation with J,=1 as energy
unit and J;,J3 as variables. This representation emphasizes
the symmetry of the model under exchange of J; and J;.
Three quantum phases have been discussed for the ground
state of the model in zero magnetic field. For J;,J3<<1, the
ground state develops from the state with dimers in their
singlet state on J, bonds and nearly free spins between these
dimers. The low energy sector is governed by an effective
one-dimensional Heisenberg antiferromagnetic (HAF) with
N/3 sites resulting from the residual coupling between these
spins and denoted as J. in the following. This leads to the
formation of a spin fluid (SF) phase with additional high
energy excitations. For intermediate J,,J3, the ground state
dimerizes, forming a twofold degenerate sequence of alter-
nating tetramers and dimers (TD phase). Finally, for both
Ji.J5 sufficiently large, the ground state is ferrimagnetic
with, e.g., a 17| structure in the unit cell of three spins
(which satisfies J; and J3 bonds and frustrates J,). These
three phases can be clearly identified already in the symmet-
ric model with J;=J; in the regimes J;=J;=<1/2 (SF phase),
1/2<J,=J3<J,, (TD phase), and J,,<J,=J5 (ferrimagnetic
phase) with J,,~1.10.!

The generalization to the distorted diamond chain J,
#J3 leads to an even richer behavior including, e.g., the
trimer Heisenberg antiferromagnetic chain on the J3=0 axis
with the standard HAF for J;=1 as limiting case. The DDC
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model can be seen as generalization of the HAF with nearest
neighbor and next nearest neighbor interactions: The critical
point of this model at Jynn/Jnn = 0.2411,!1 which marks the
transition from a spin fluid to the dimerized phase, is ex-
tended into the line between the SF and the TD phases in the
DDC model and the Majumdar-Ghosh point at Jynn/Jnn
=1/2 is extended into the line 1/2<J,=J5=</J,, with simple
and exactly known dimerized ground states. In particular, the
transition line between the SF and TD phases is a line of
Kosterlitz-Thouless phase transitions. The point J;=J3=1/2
is a point of particular high degeneracy. However, compared
to the simple HAF chain with nearest and next-nearest neigh-
bor exchange, the DDC model has the dimer subsystem as an
additional degree of freedom which dominates the high en-
ergy regime, but also, in the appropriate parameter regime,
interacts with the low energy spin part. The ferrimagnetic
part of the quantum phase diagram is another consequence of
the combined influence of these 2 degrees of freedom. In
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FIG. 1. (Color online) (a) Structure and (b) phase diagram of the
distorted diamond chain model [(b) from Ref. 3].
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addition to the ideal DDC as defined in Eq. (1), models with
somewhat modified interactions, such as the tetrahedron
chain!? and the strongly anisotropic xy version of the DDC,?
have been considered and serve to illustrate the effect of
deviating from the ideal isotropic diamond structure.

An external magnetic field polarizes the quasi-free-spins
and at a critical field H,; produces a magnetization plateau at
1/3 of the total saturation magnetization. The plateau state
corresponds to a fully saturated subsystem of spins 1/2 and
all dimers (J, bonds) in their singlet state. Further increase of
the moment requires breaking up at least one dimer with its
large energy scale J,=1, and therefore a correspondingly
higher field H=H,_, (end of the plateau). Finally, complete
saturation is obtained at the field H,, given by

Ho 13
— =5+ +J3)
J, 2 4

1 1 12
+E{2(‘]1—]3)2+Z(J1+J3)2+1—(J1+J3)} .

2)

The critical field H,, (beginning of the 1/3 plateau) is
determined by the level crossing between the saturated state
of the effective HAF and its “ferromagnon” excitation with
one unit of magnetization less. If the mapping to the effec-
tive HAF applies, this gives the relation

Hcl = 2Jeff' (3)

Apart from the theoretical interest in investigating a
model which allows to follow the variation between different
quantum phases, the DDC model is of interest since it seems
to describe reasonably well the compound azurite,
Cu;(CO3),(OH),. Azurite has been investigated in detail by
high field electron spin resonance,® as well as by static mea-
surements (magnetization, susceptibility, specific heat),” and
the existence of the 1/3 magnetization plateau has been
clearly established. From these experiments, this compound
appears to be in the SF phase close to the phase transition to
the TD phase. Recently, however, the possibility of one of
the couplings J;,J3 being ferromagnetic has been suggested
from susceptibility and specific heat data.>'* Beyond the
static properties investigated so far, the dynamics of the
DDC and the material azurite, in particular, remain as a chal-
lenge to be understood both experimentally and theoretically.
The characteristic feature of the model, namely, the presence
of 2 degrees of freedom with different energy scales and
their mutual influence will show up most clearly in the en-
ergy spectra of the model. These are best investigated by
inelastic neutron scattering (INS) experiments as clearly seen
in a recent work.!? For a more complete description of both
the DDC in the full phase diagram and the results of INS
experiments on azurite, we present in the following results
on the dynamics in the SF phase (Sec. II) and in the TD
phase (Sec. III).

A perturbative approach can be applied to obtain results in
the regime J;,J5<<1 (see Ref. 4) as well as close to some
special points in the phase diagram. Generally, however, for
a quantitative description, numerical calculations are re-
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quired. We will present in the following the results of exact
diagonalization using both the Lanczos algorithm for sys-
tems with 24 spins and complete diagonalization (all eigen-
values) for 12 and 18 spins. The latter are necessary since the
Lanczos algorithm gives only a limited number of the lowest
energy levels in the subspace considered (in our case, S;,, and
wave vector k), which is not sufficient to cover the excited
dimer subspace with its higher energies. Since the elemen-
tary cell has three spins, our system sizes are restricted to
four, six, and eight elementary cells. It turns out, however,
that for many aspects, this is sufficient to obtain reliable
results for the infinite system when a finite size analysis is
carried through.

II. DYNAMICS IN THE SPIN FLUID PHASE

It is helpful to start the discussion from two well known
limiting cases:

(i) For J,=J5=0, the system reduces to N/3 independent
dimers and N/3 free spins. In the ground state, all dimers are
in their singlet state and a 2V3-fold degeneracy due to the
free spins results. A magnetic field immediately saturates the
free spin system leading to a magnetization of M, /3 which
remains constant until, at a field H,,=J,, the dimers change
to their triplet states saturating the system. This behavior to a
certain extent remains valid on the symmetry line J;=J3
where the total spin on all J, bonds is independently con-
served. The ground state, as well as the 1/3 magnetization
plateau in the low field, remains unchanged, whereas the
transition to full saturation is determined by the effective
interaction which develops between two neighboring dimers
in their triplet state and finally leads to an effective S=1
chain. Qualitatively, for a large range of parameters, the dis-
torted diamond chain can be divided into two subsystems
with clearly different energy scales, a low energy part of N/3
spins 1/2 and a high energy part of N/3 dimers.

For small deviations from the independent free spin limit,
J1 #J3, the spin 1/2 subsystem develops some coupling by
polarizing intermediate dimers and the 2V3-fold degeneracy
is lifted in favor of an effective Heisenberg chain with ex-
change J.4. In this regime, excitations of the DDC remain
well separated. They are in the low energy regime with en-
ergy scale J. forming the spinon continuum of the HAF
with N/3 spins in the Brillouin zone of the full DDC (lattice
constant a, reciprocal lattice vector 7=27/a) or in the high
energy regime with energy scale J,=1 corresponding to the
excitation of a dimer to its triplet state and developing into a
dispersive band with width Ay, due to the coupling to the
low energy spin subsystem. We will not consider states with
more than one excited dimer in the following.

(ii) For J;=1,J3=0, the system reduces to the Heisenberg
antiferromagnet with N spins, forming a spinon continuum in
the Brillouin cell with reciprocal lattice vector 37, energy
scale 1, and no additional high energy excitations. For 0
<J; <1, we have a trimerized Heisenberg chain and the
spectrum is obtained by folding back the spinon continuum
to the smaller Brillouin zone corresponding to lattice con-
stant a. This results in three excitation branches (actually
continua) which fill the energy range up to e=7 with small
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(for J; slightly less then 1) gaps between them and an alter-
nating sequence of minimum, maximum, and minimum at
wave vector k=1 (in the following, we will use exclusively
the Brillouin zone with reciprocal lattice vector 7, corre-
sponding to the full DDC). With increasing 1-J, these tri-
mer bands develop increasingly larger gaps; finally, the con-
tinuum of the effective HAF emerges from the lowest band
and the two upper bands conspire to give the dimer excita-
tions decorated by continua of low energy spinon excitations.

Using this frame, the lowest excitations of interest in the
following are easily described:

(i) the spinon continuum of the effective chain,

(ii) the band with one excited dimer above the spinon
continuum,

(iii) the “inverted ferromagnon,” i.e., the saturated effec-
tive HAF with one spin deviation (S =1 oN/3- 1), and

(iv) the band with one excited dimer above the saturated
effective HAF, i.e., one dimer in its triplet state (S;Ot N/3
+1).

The dispersion of excitations (ii)—(iv) is determined by
hopping processes (spin deviations and dimer triplets, re-
spectively, moving to neighboring sites due to the residual
interactions). To lowest order, these processes result in a co-
sine dispersion and we introduce the following as notation
for (ii):

e-dlmer(k) =1+ é<d (0)

imer dlmer cos k. (4)
More precisely, this excitation is not a single band but a
continuum due to the spinon continuum of initial states;
however, we will only be able to discuss the lower edge of
this excitation and therefore simplify the notation using Eq.
(4). Excitations (iii) and (iv) are the relevant excitations
above the 1/3 plateau; we therefore use a notation giving
their energies in finite magnetic fields relative to the plateau
ground state with Stot— IN/3:

Eferrom(k) = EAfer‘rom(l +Cos k) +H - Hcl ’ (5)

1
e (k) =1+ NURTAR S

dimer

—A“m (1+cosk)—(H-H,,). (6)

dimer

The quantities A and & give the widths and the nontrivial
contributions, respectively, to the minimum energy (at k=1r)
of the corresponding bands. The cosine dispersion, of course,
is only valid in lowest order and will change to a more com-
plicated expression for real systems.

In the model of an effective HAF for the low energy re-
gime, its exchange constant J.; determines the low energy
spinon (i) and the inverted ferromagnon spectrum: Ageom
=2J 4. Combined with edslf;er, it is also sufficient to give the
range of the plateau phase and to characterize its dynamics:
In the presence of a finite field, spectra are identical to those
without field except for the shifts and splittings due to Zee-
man energies. This establishes states with an increasingly
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larger total spin S, (in their maximum z component) as
ground states. The plateau begins at the field H.; when the
Siot=5 IN/3 level (saturated state of the qua51 -free-spin sub-
system) is forced below the lowest Sy, =3 IN/3-1 level (fer-
romagnon band at wave vector 7) by the external field, lead-
ing to H, =2J.. The lowest excitation for the plateau
dynamics close to the field H,; then is the ferromagnon of
Eq. (5). When the field is increased across the plateau re-
gime, the Stot:%N /3+1 level (one excited dimer on top of
the saturated quasi-free-spin subsystem) lowers its energy,
crosses the ferromagnon excitation, and, finally, is respon-
sible for the end of the plateau at the upper plateau field H,,
implying

Ho=H, +1+= (Jl+J3)+ H- (7)

The parameters determining the spectra can be calculated
in perturbation theory in J,J3 and to lowest order are deter-
mined by the level spectrum of the general (J; #J3) tetramer
with four spins 0,...,3. This spectrum includes the lowest
order information about Jeff 1n the singlet-triplet splitting of
spins 0 and 3 and about Al dlmer in the amplitude for the pro-
cess |Ts)—||t+) (s and ¢, are noninteracting dimer states)
which determines the propagation of an excited dimer triplet.
The results to lowest order in J;,J5 are

2Jeff = Aferrom = 2A8dt (Jl ]3)2v

dimer —
63?:11& (‘Il - J3)2,
1
HC2=1+5(.I|+J3). (8)

Joir has been calculated in straightforward perturbation
theory up to fifth order.* Based on the splitting of the general
tetramer into singlet and triplet states, we have obtained a
result which accounts partly also for higher orders and al-
lows reasonable estimates for |J,—J3|<<1 but finite J,+J5:

1
Jeir= 5{{(11 +J3=1)2+3(J, = J3) 2

- )% 9)

In lowest order perturbation theory, the relevant param-
eter, in addition to the energy scale set by J, and to J;+J3, is
the exchange of the effective HAF determined by (J,—J3)?
and many characteristic quantities of the DDC would be re-
lated by simple numerical factors if the mapping were per-
fect. Whereas these perturbational results allow us to discuss
the dynamics in principle, J;,J; values of interest for the
bulk of the phase diagram as well as for a material such as
azurite are beyond the validity of perturbation theory. We
therefore present in the following results from the numerical
approaches described above. This will allow us to follow the
essential aspects of the dynamics in the intermediate regime,
i.e., through all of the SF phase. In Figs. 2 and 3, we show
excitation spectra for a representative sequence of three sets
of exchange parameters: set (a) represents the case of small
couplings, set (b) is for a point in the phase diagram close to

+Ji+J;=-{1+(,
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J»=1.0,J;=03,]3=0
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FIG. 2. (Color online) Low energy spectrum of the DDC for N=24, H=0, J,=1.0 and (a) J,=0.3, J53=0, (b) J,=0.7, J3=0.3, and (c)

JIZ—I.O, J3=O.4.

the SF to TD transition thought to be qualitatively represen-
tative for azurite,” and set (c) shows results for the case of
one coupling ferromagnetic. The data are obtained by diago-
nalizing chains with 24 spins using the Lanczos algorithm.
The low energy excitation spectra in zero external field
are shown in Fig. 2. Here and in the following, energies are
in units of J, and wave vectors in reciprocal lattice units
(shown is the interval k=0, ..., corresponding to half of
the Brillouin zone). The spectra include all levels with S,
=0, 1 of the spinon type in the low energy subsystem of eight
spins and, in addition, the lowest excitations for S, =2 (for
completeness) and S,,;=3. The latter band of excitations is
the inverted ferromagnon and a cosine dispersion approxi-
mating the data points is shown for qualitative comparison to
the effective model with its exact cosine dispersion. Figure 3
shows the excitation bands in a magnetic field H,; (begin-
ning of the 1/3 plateau). In magnetic field, two Zeeman
components of the S, =4, k=0 level are relevant: The S;,
=4 component turns into the plateau ground state, whereas

the S7,=3 component becomes the top of the inverted ferro-
magnon band. It is identical to that of Fig. 2 (apart from
Zeeman shift) and now the lowest excitation. In addition,
Fig. 3 shows the lowest excitation band with S,,,=5, which
requires breaking one dimer (J,) bond. Cosine dispersions as
approximation to the data points are included for these two
bands. For completeness, we also show the first full band
with S;,;=4 above the plateau ground state.

Among the data shown, the excitations of interest from an
experimental point of view (with large transition matrix ele-
ments for, e.g., INS) are the spinon continuum in zero field
and the inverted ferromagnon band, as well as the excited
dimer band in the plateau field. In addition, in zero field,
there will be transitions with energy of the order of J, to an
excited dimer band with S,=1 resulting from breaking a J,
bond on top of the effective chain ground state. This is more
difficult to deal with than the excited dimer excitation shown
in Fig. 3, which is on top of the less complex saturated
effective chain state. We will discuss these excitations below
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Jp=1.0,J1=0.3,J3=0 (N =24, lowest states for given S)
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J,=1.0,7;=0.7,13=0.3 (N =24, lowest states for given S )

‘ . . ‘ .
L 1 4
N 1F -
A
1+ 4
> ° ° ® >
[ [ ] on L |
Q Q Stot=3
8 I ] 8 [ ) 911:: =4 (plateau)
g g A Stot=35
E FEE ) ° *
5 0.5 | = 0.5k ° *
20 S 3 :
S tot 1) [ ]
L @® Sy =4 (plateau) ]
A Sii=5
¢ 7
08 | i 08 | _d
0.25 0.5 0.25 0.5
(a) wave vector (r.l.u) (b) wave vector (r.l.u)
J,=1.0,J; =-1.0,J3 = 0.4 (N = 24, lowest states for given S (ot )
. ‘ .
1 Stot=3 |
® Siot=4 (plateau)
A Sipi=5

©
n

excitation energy

\
0.25 0.5

(c) wave vector (r.l.u)

FIG. 3. (Color online) Excitation spectrum of the DDC above the 1/3 plateau for N=24, H=H,.,, J,=1.0 and (a) J,=0.3, J3=0, (b)

J1=O.7, J3=0.3, and (C) J|=—1.0, J‘;=O4

based on calculations of all eigenvalues of an N=18 chain
(see Table III). States with S, > 1 in zero field, as well as the
band with S;,;=4 above the plateau ground state, will be only
weakly excited in INS and analogous experiments. In par-
ticular, states in the S\, =4 band are obtained from the satu-
rated state by the virtual excitation |s1)— |z, | ). They have
an excited dimer and an overturned spin (compared to the
saturated state) in the low energy subsystem and thus require
two spin flips to be excited.

We now discuss how the dynamics changes with varying
exchange constants. Set (a) shows the behavior typical for
the weakly coupled DDC: the bands are well separated in
energy and the cosine dispersion is nearly perfect. Set (b)
displays what is expected qualitatively for a material such as
azurite: in zero field, a spinon continuum should be clearly
visible, whereas in the plateau regime, two separate bands
dominate the picture. The cosine approximation to the dis-
persion is less applicable. Actually, the spectrum of the in-
verted ferromagnon is close to linear for smaller wave vec-

tors. For set (c), which serves as an example for the
alternative suggesting one ferromagnetic coupling,'# the dy-
namics in zero field is seen to be surprisingly close to that of
set (a). This may explain the emergence of the ferromagnetic
alternative from a discussion of static quantities. However,
these two sets lead to strongly differing dynamics in finite
field, as seen by comparing Figs. 3(b) and 3(c). The standard
antiferromagnetic model (b) implies two well separated
bands with rather small widths, whereas the partly ferromag-
netic alternative (c) is characterized by an overlap of the two
bands and a strong dispersion of the excited dimer band.
For a semiquantitative discussion of the low energy dy-
namics of the DDC, the mapping to the model of an effective
HAF is rather useful. Therefore, we discuss shortly the qual-
ity of this mapping for H=0 in Fig. 4 for the two parameter
sets (a) J,=0.3, J3=0 and (b) J;=0.7, J3=0.3. We compare
the numerical spectrum for N=24 (dots) with the energies of
the N=8 HAF with unity exchange constant (open circles).
The energies of the DDC have been scaled by an effective
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FIG. 4. (Color online) Spectrum of the effective HAF (N=8) vs
spectrum of the DDC for N=24, H=0, J,=1 and (a) J;=0.3, J;
=0 and (b) J;=0.7, J3=0.3 (see text).

exchange constant J g, chosen to reproduce the (N=8) maxi-
mum spinon energy at k=73, Sy, =1. For the parameter set
(b), energy levels of the N=8 HAF, which are beyond the
range of the Lanczos calculation for the DDC model, have
been omitted from the plot to obtain a clearer picture.
Whereas the mapping for the small coupling constants of set
(a) is nearly perfect throughout all of the spectrum, substan-
tial deviations are seen for the parameter set (b): the low
energy spinon part is still reproduced well by the effective
model, but the high energy part, in particular, the ferromag-
non band with S,,=3, is very different both in energy and in
dispersion. A cosine dispersion is only a rough approxima-
tion to the spectrum.

Thus, a quantitative experimental investigation of the dy-
namics will contribute substantially to locating the position
of a specific compound in the phase diagram of Fig. 1(b). For
a quantitative overview (and possibly for use in the determi-
nation of coupling parameters from experiment), we discuss
in the following the characteristics of the spectra for a wider
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TABLE I. DDC parameters related to the effective interaction
(see text).

Jogr from Jogr from
Couplings spinon spinon  Ferromagnon Dimer band
Ji, J3 maximum at k=1 Width width
0.02,0.00 2.06Xx1073 2.06X1073 4.12X1073 2.02x1073
0.30, 0.00 0.060 0.060 0.121 0.051
0.60, 0.00 0.223 0.207 0.480 0.218
0.80, 0.00 0.343 0.291 0.795 0.400
0.70, 0.30 0.212 0.204 0.529 0.181
0.65, 0.25 0.192 0.186 0.452 0.152
0.60, 0.20 0.172 0.168 0.388 0.132
0.40, 0.00 0.107 0.106 0.220 0.080
0.40, —1.00 0.266 0.232 0.478 0.456
0.02, -0.40 0.046 0.046 0.091 0.068

range of exchange coupling constants. In Tables I and II
below, we present the information obtained from the numeri-
cal calculations after reducing the spectral data to a few char-
acteristic numbers. First, from the numerical data, we have
calculated values for the quantities determined by the effec-
tive exchange between the quasi-free-spins. In table I, we
give numbers for J.; determined from the maximum spinon
energy at k=7/2, S;;=1 (when multiplied by 1.7964---, the
corresponding energy in the N=8 HAF chain, these numbers
lead back to the energy for the DDC model) and for the
Sot=1 spinon at k=7 (gapped due to discreteness). Further,
we give the width of the ferromagnon band (which would be
2J . if the mapping to the effective model were perfect) and
the width of the dimer band above the plateau with S
=N/6+1. In Table II, we give numerical values for the char-
acteristic magnetic fields, i.e., beginning (H,;) and end (H,,)
of the plateau, as well as the saturation field H,. In the
standard case (actually, some exceptions exist close to the
phase transition line), H,; is identical to the ferromagnon
width from Table I. In Table II, we also give the energy scale

TABLE II. DDC parameters related to the characteristic fields
and unit of energy for azurite (see text).

Energy scale J,

Couplings in meV and T,
Ji. J3 H H, Hg, respectively
0.02, 0.00 4.12x107% 1.0100 1.0102 4.16 meV=32.7T
0.30, 0.00 0.121 1.143  1.200 350 meV=275T
0.60, 0.00 0.480 1.245 1500 280meV=220T
0.80, 0.00 0.795 1272 1740 241 meV=190T
0.70, 0.30 0.529 1.390  1.627 258 meV=203T
0.65, 0.25 0.452 1.371  1.569  2.68 meV=21.0T
0.60, 0.20 0.388 1342 1512 278 meV=218T
0.40, 0.00 0.220 1.183  1.29 326 meV=256T
0.40, —1.00 0.478 0.861 1.234 340 meV=267T
0.02, -0.40 0.091 0.824 0.868 4.84meV=380T
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which is relevant for an application of the numerical results
to azurite. Using the experimental number H,=33 T, the
value of the coupling J, is calculated from Eq. (2) and the
values given in Table II (in both meV and T) may serve to
obtain energies and fields applying to azurite in standard
units. In Tables I and II, three regimes of the SF phase are
covered: (a) values along the J;=0 axis (i.e., for the Heisen-
berg trimer model), (b) values along a diagonal path which
appears as the most interesting one for discussing azurite,
and (c) two examples for ferromagnetic coupling. We will
discuss below the possibility of such an interaction from the
point of view of inelastic excitations. Values along the line
J1=0.6, passing through the phase transition at J;=0.364,
will be presented in Sec. IV.

If the mapping to an effective low energy Heisenberg
chain were perfect, it would imply relations between three
different quantities, which are all determined by Jg:

(i) The maximum of the effective one spinon dispersion at
wave vector /2: €(m/2)=1/2J .

(ii) The critical field which determines the beginning of
the plateau: H.1=2J .

(iii) The width of the effective inverted ferromagnon as
the lowest excitation at the beginning of the plateau (in fact,
its minimum defines H,,): €4,(0)— €, (7)=2J.4. This is au-
tomatically equal to (ii) from the definition of H,;, but the
cosine dispersion is an additional independent property.
Since the mapping is only approximate, these quantities dif-
fer as is seen in the numerical data and the differences char-
acterize the quality of the mapping. Actually, there are more
possibilities to extract J from the numerical data such as
the energy of the lowest spinon singlet at k= and the
ground state energy (suitably extracted from the energy of
the saturated subsystem state), but numbers from these ap-
proaches essentially confirm the picture as it has emerged
from the tables above. The essential conclusion for the real
DDC is that the effective coupling J s depends on energy.

The quantities in Tables I and II have been calculated for
N=24, but a comparison with results for N=12 and N=18
shows that finite size effects are very small, indeed negligible
to the accuracy given. This is due to the fact that, e.g., Jo is
determined by comparing two finite systems, the HAF chain
with N=8 and the DDC with N=24. This is illustrated in Fig.
5, where the excited dimer bands for two different sets of
couplings are shown combining results for N=24 and N
=18 in the same graph. We conclude that the effective pa-
rameters considered so far can be reliably determined for the
infinite chain. The situation is different for the last quantity
of interest: the dynamics of the one dimer excitations for H
=0. These excitations originate by exciting one dimer from
singlet to triplet on top of the spinon continuum of the effec-
tive HAF chain (instead of on top of the saturated effective
HAF chain for Ay, as given above). In the following, we
give results on this zero field branch as far as numerically
possible:

At zero field, the excited dimer states form a continuum
as well and the infinite chain limit can only be obtained by
extrapolation in 1/N. With N=12 and N=18 as the only
available numbers of spins, the extrapolation can only be
done for wave vectors k=0 and k=. The lowest energy
levels in our finite systems result from coupling of spinons at
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excited dimer dispersion for H=H
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FIG. 5. (Color online) Excited dimer band of the DDC (N=24
and N=18) above the 1/3 plateau ground state (in a magnetic field
H(Tl) for J1=0.7, J3=0‘3 and Jl=0.8, J3=0.2.

wave vectors 0 (singlet only) and 7 (singlet and triplet) to
the dimer triplet, i.e., we get a band of one singlet, three
triplets, and one quintuplet. However, the separation both
between these multiplets and to the higher levels is due to the
finite size, whereas in the thermodynamic limit, a continuum
with energy of the order of J, will result. This is to some
extent reflected in the results of finite size extrapolation of
the multiplet energies related to one excited dimer: There is a
clear tendency for the energies to converge to the same
value. Thus, only one energy in this high energy subspace
can be given reliably: no reliable information can be ob-
tained in this approach about splitting into bands. In Table
III, we give the energy of the lowest state in the continuum
of excited dimers obtained this way for a number of coupling
constants.

III. DYNAMICS IN THE DIMER-TETRAMER PHASE

The ground state in the tetramer-dimer phase is twofold
degenerate and develops from the ground state on the sym-
metry line J;=J3. On this line, the two ground states can be
written down explicitly (even for finite systems with an ar-

TABLE III. Energies e€(k=0) and e(k=) in the DDC lowest
excited dimer band (onset of the continuum). Values are extrapo-
lated from N=12 and N=18 to infinite N.

Couplings J,, J3 elimer(f=0) elimer(f = q7)
0.30, 0.00 0.861 0.893
0.60, 0.05 0.988 0.978
0.60, 0.25 0.720 0.711
0.65, 0.25 0.854 0.793
0.70, 0.30 0.864 0.776
0.40, —-1.00 1.226 1.255
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bitrary even number of cells of three spins). They are given
by the alternating sequence of the dimer singlet S and the
lowest tetramer singlet T. This allows the two equivalent
configurations

- STSTST---
and
--TSTSTS--- (10)

describing the two degenerate ground states.

The lowest excitations above these ground states are ob-
tained as solitons which are defined by gluing together the
two degenerate ground states in a localized region on the
chain. This gives, e.g., the state

- STS *ST---, (11)

where * denotes a free spin. A soliton is possible only with
two dimer singlets adjacent to each other and a free spin
between them whereas the configuration - - T T- - obviously
does not exist. On the symmetry line J,=J;, there are N/3
degenerate localized one-soliton configurations. They start to
propagate and to form a soliton band for J; # J5. The prop-
erties of a single soliton can suitably be investigated for
chains with an odd number of cells N/3 when periodic
boundary conditions require the existence of one soliton in
the ground state. The hopping process

TS * — % ST (12)

with amplitude ¢ leads to the propagation of solitons and the
formation of a ground state band with energy

€°l(k) = Ey + 2t cos 2k. (13)

Thus, from numerical calculations for an odd number of
cells, the hopping amplitude is easily determined even when
only small systems are available. For infinite chains with
periodic boundary conditions and an even number of cells
N/3 which possess two degenerate ground states and enforce
an even number of solitons, the low energy spectrum is
dominated by the two soliton continuum emerging from in-
dependent propagation of two-solitons with wave vectors
Yk+ky and Sk—ky, ie.,

€°(k) = 2E, + 4t cos k cos 2k;. (14)

Numerically obtained soliton spectra are shown in Fig. 6
for (a) N=15 and (b) N=18 for the point J,=0.6,J;=0.55
close to the symmetry line in the phase diagram. €°!(k) in
Fig. 6(a) clearly shows the cos 2k dispersion, whereas the
dispersion of €>*°!(k) in Fig. 6(b) is somewhat more compli-
cated due to the small size of the system. Also shown are the
three- and four-soliton bands, respectively, demonstrating the
clear division of the spectra into distinct soliton bands for
this nearly symmetric set of couplings [the zero of energy in
Fig. 6(a) is taken from the noninteracting limit]. The situa-
tion is analogous to the Ising chain with small transverse
interactions, the system where the dynamics of magnetic
solitons was discussed first.!>!6 Slightly different, the soliton
spin 1/2 here is a real spin 1/2 which can be attributed to the
free electron of the Cu®* ion between the two dimers forming
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Jp=1.0,J1=0.6,J3=0.55 : solitons in TD phase (N = 15)
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FIG. 6. (Color online) Soliton spectrum of the DDC [(a) N
=15, (b) N=18] in the TD phase for J,=0.6,J5=0.55. The N=15
spectrum is shown in the complete Brillouin zone k=0, ...,27 to
demonstrate the cos 2k dispersion of the single soliton.

the domain wall. For small numbers N/3, the soliton spec-
trum clearly shows the effects of the different symmetries of
the singlet and triplet.

From the one-soliton data for N=15 and J,=0.6,J5
=0.55, the hopping amplitude is deduced as t=0.0076. For
the two-soliton data for N=18, the corresponding calculation
has to include the possibility of two neighboring solitons as
well as the resulting symmetry effects and gives a somewhat
higher value, t=0.0097. The deformation of the zero order
wave function due to neighboring solitons is strongest for
small systems, which explains the difference. However, for
N=24 (when only the lowest two-soliton band is accessible
in Lanczos calculations), we obtain #=0.0076 = 0.0002,
identical to the one-soliton result for N=15 within the uncer-
tainty resulting from matching the cosine dispersion for the
different wave vectors.

IV. CROSSING THE PHASE TRANSITION LINE

In this section, we present some data for the specific heat
and for the spectrum of low-lying excitations in order to
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Specific heat for H=0,J; =0.6
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Specific heat for H=0.6,J; = 0.6
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FIG. 7. (Color online) Specific heat of the DDC (from all levels for N=18) for (a) H=0, (b) H=0.6, and (c) H=1.3, fixed J;=0.6 and

varying J5 through the phase transition.

approach the behavior of the system when its coupling con-
stants change between well defined end points, one in the SF
phase, and the other one in the TD phase, thus crossing the
phase transition line. Evidently, owing to the small system
sizes accessible only in our calculations, we cannot claim
that these data describe correctly the most interesting aspect,
namely, the critical behavior; on the other hand, our data for
both the specific heat and the spectrum of low-lying excita-
tions set a reasonable frame for the transition regime, to be
filled by more detailed calculations later. In the following,
we present results for the DDC on the line J,=0.6 for vary-
ing J5. As discussed above, the phase transition along this
line is of Kosterlitz-Thouless type and can be considered as a
generalization of the phase transition in the HAF with both
nearest and next-nearest neighbor exchanges. We therefore
have applied the procedure of Ref. 11 to determine the criti-
cal coupling and found that the phase transition occurs at
J3=0.364.

Figure 7 shows a sequence of specific heat data varying J3
for fixed J; for three different values of the magnetic field.
The data are obtained from the full spectrum for the N=18
chain and therefore reliably cover the complete temperature

regime although critical properties near the critical coupling
J3=0.364 will appear smeared out. In all the diagrams, we
use a logarithmic temperature scale adequate to the strongly
different energy scales. For all magnetic fields, the specific
heat exhibits a high temperature peak at 7=0.5, whereas the
low temperature properties reflect the structure of the system.
For H=0 and low temperature [Fig. 7(a)], the SF phase is
characterized by a continuously increasing contribution to
the specific heat, the remnant of the effective Luttinger lig-
uid. With increasing J3, this contribution develops gradually
into the gapped contribution of the TD phase with character-
istic shoulders on both sides of the phase transition at Jj
~(.364. For H=0.6 [Fig. 7(b)], the DDC is always in the
gapped plateau regime and the specific heat shows little
variation with the coupling. For H=1.3 [Fig. 7(c)], the DDC
is close to saturation and the differences between the two
phases, resulting from the energy spectra above the plateau
gap, become apparent again. In particular, the well defined
grouping into soliton bands at J3=0.55 leads to a strong low
temperature peak which actually develops continuously from
lower J; values. It would be interesting to see, using more
powerful numerical methods, whether the development of
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FIG. 8. (Color online) Low-lying spectra [S,=0 (red/full) and
Sw=1 (blue/open)] of the DDC (N=24) for J;=0.6 and J;
=0.55,0.44,0.32,0.05.

this peak in the nearly saturated case shows critical proper-
ties. Whereas the qualitative behavior of the specific heat for
H=0 and J,;=0.6, J3=0.32 agrees with the experimental data
for azurite shown in Ref. 9, a detailed comparison for an
appropriate parameter set requires data with the necessary
subtraction of the phonon contribution.

Figure 8 shows a sequence of spectra of low-lying exci-
tations (S,,,=0,1) in a zero magnetic field obtained by the
same procedure as the spectra shown in Secs. II and III.
Qualitatively, the transition from the SF phase with its gap-
less spinon continuum to the gapped soliton spectra in the
TD phase is clearly seen, as far as possible for the limited
size of the system. With increasing J5, the second degenerate
ground state at k=7 emerges, the spinon continuum deforms
into the soliton band, and the gapless character disappears.
Excitation spectra in a finite magnetic field, in particular,
for fields in the plateau regime, on the other hand, do not
show specific variations but rather continuous changes across
the phase diagram without prominent features close to J3
=0.364, the location of the phase transition in zero field. This
illustrates, as expected, that the signature of the phase tran-
sition in the dynamics is limited to zero external field and
low-lying excitations, whereas the 1/3 plateau as well as the
accompanying high energy excitations are continuous across
the phase diagram.

V. CONCLUSIONS

For the S=1/2 distorted diamond chain in both the SF
and the TD phases, we have calculated the spectra of low-
lying excitations and the specific heat. We have used both
full numerical diagonalization (for chains with up to 18
spins) and the Lanczos algorithm (for chains with up to 24
spins) and have discussed the results in relation to approxi-
mate analytic approaches. Except close to the SF-TD phase
transition, results for our small systems are shown to repre-
sent the thermodynamic limit. Our calculations are for an
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arbitrary value of the external magnetic field. Results are
mainly given for zero field and for fields corresponding to
the 1/3 plateau regime.

In the SF phase, the low energy spectra can be related to
a Heisenberg antiferromagnetic chain with effective interac-
tion J.4. For parameters beyond the validity of a perturbative
approach, this effective interaction has to be allowed to be
energy dependent. The lowest excitations in the plateau re-
gime are the inverted ferromagnon and the propagating
single dimer triplet excitation with, however, partly strong
modifications of the corresponding cosine dispersions. The
values of the characteristic parameters (J., extent of the
plateau regime, widths of the cosine bands) are given for
typical paths crossing the SF phase. These data should allow
to decide whether a material such as Cu;(CO;),(OH), (azur-
ite) is sufficiently well described by the DDC model and, if
so, to determine the corresponding couplings. The standard
assumption for azurite is to take all couplings as antiferro-
magnetic and we have shown that the spectra of low-lying
excitations exhibit large and characteristic changes when the
possibility of one ferromagnetic coupling is introduced. We
therefore expect that our data will allow us to interpret quan-
titatively experimental data on azurite. This refers, in particu-
lar, to the results of inelastic neutron scattering
experiments.'® Considering the present status of such inves-
tigations, our results do not confirm the conclusion of at least
one ferromagnetic coupling in azurite. This is in agreement
with previous conclusions based on the specific heat in Ref.
9 and also, using the xy version of the model, in Ref. 13.

Our results lead us to describe the following signatures of
the DDC when ferromagnetic couplings are present:

(i) Whereas the dimer width is roughly 1/2 of the ferro-
magnon width for antiferromagnetic couplings (as suggested
by perturbation theory), for ferromagnetic couplings, these
widths tend to become equal.

(ii) The sign of the couplings has a marked influence on
the relative appearance of the ferromagnon and the excited
dimer band. For couplings J;,/3=(-1,0.4), these bands
above the 1/3 plateau overlap, whereas for (-0.4,0.02), fer-
romagnon as well as dimer width become very small and,
correspondingly, H,., becomes much smaller than in pertur-
bation theory.

The low-lying excitations in the TD phase with its two-
fold degenerate ground state are shown to be solitons. The
width of the one-soliton band as determined from the N
=15 chain not too far from the symmetry line J,=J5 repro-
duces well the soliton bands in the N=24 chain and therefore
gives reliably the tunneling amplitude for the soliton propa-
gation in the thermodynamic limit.

We have also shown spectra as well as the specific heat on
a line across the SF-TD phase transition. Although the small
systems accessible to us do not allow us to discuss critical
properties of the DDC close to this Kosterlitz-Thouless tran-
sition, the variation of the dynamical properties through the
transition becomes clear. In particular, only the low energy
properties, determining the behavior of the system at zero
field, carry the signature of the phase transition.

Generally, the DDC has many features in common with
the antiferromagnetic Heisenberg chain with nearest and
next-nearest exchange and the SF-TD phase transition is of
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the same type as the Kosterlitz-Thouless transition at Jynn
=0.2411, ... ,Jyn in this system. On the other hand, we have
shown that the additional degrees of freedom, resulting from
the possibility to excite the J, dimers to the triplet state,
show up clearly in the dynamics. We leave the investigation
of the influence of these degrees of freedom on the phase
transition using more powerful analytical and numerical
methods to the future.
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